$\underset{\rm rshum@cmu.edu}{\rm Roberto~Shu}$

5000 Forbes Ave., EDSH 120, Pittsburgh PA 15213 • C:(734) 355-8757 • www.robertoshu.com				
Carnegie Mellon University, Pittsburgh, PA Ph.D., Robotics - Advisor: Dr. Ralph Hollis (expected) December 2021 Thesis: Development of an Agile and Dexterous Balancing Mobile Manipulator				
M.S., Robotics – Advisor: Dr. Koushil Sreenath Thesis: Design and Analysis of a Biped Leg to Survive High-Impact Falls				
University of Michigan, Ann Arbor, MIMay 2014B.S., Mechanical EngineeringMinor: Multidisciplinary DesignB.S., Aerospace EngineeringMinor: Mathematics				
 Amazon.com, Robotics & AI group May 2020 – Aug. 2020 Applied Scientist Intern Developed and implemented a novel variable compliant controller in C++ for a torque controllable robot manipulator to further Amazon's warehouse automation efforts Validated the new controller over the existing controllers implemented with experiments on the robot hardware, code was merged into the production branch of the organization's code base Implemented and deployed a task space admittance controller based on a joint torque observer to estimate Force/Torque acting at the end-effector 				
 Microdynamic Systems Laboratory, Carnegie Mellon University Sep. 2016 – Present Advisor: Dr. Ralph Hollis Researching whole-body planning and control for dynamically balancing mobile robots, currently working on the CMU ballbot humanoid, a 200 lb human size robot that balances on a single ball and has a pair of 7-DOF arms and multi-DOF hands Devised a centroidal based optimal whole-body planning and control framework to perform simultaneous locomotion and manipulation tasks, trajectory optimization generates whole-body motion plans offline and are tracked online with a whole-body MPC on the real robot Designed and built a pair of lightweight compliant 7-DOF anthropomorphic arms capable of lifting 20 kg for the ballbot, including the full software stack to control the arms. Actuation with BLDC + Harmonic Drive Performed system identification and developed 2D, 2.5D and 3D dynamic simulations of the CMU ballbot with 7-DOF arms in Matlab,V-REP and PyBullet for cross validation Contributed to the writing of a successful USD 1.5 million NSF research grant 				
 Hybrid Dynamic Robotics Lab, Carnegie Mellon University Aug. 2016 – May 2018 Advisor: Dr. Koushil Sreenath Designed human size robotic leg with active damping via M.R. damper and non-linear spring element to withstand the high impact force of landing high jumps (> 3 m), performed FEA analysis and created custom BLDC + Harmonic Drive + Belts actuation unit Simulated leg design in SimMechanics and implemented and used CMAE-ES to solve for the optimum control gains, damping, and joint profiles for save landing Created a real-time simulink communication interface and LQR position control for Nano Quadcopter Crazyflie Biological Inspired Robotics And Dynamical Systems, U of M May 2013 - May 2014 Advisor: Dr. Shai Revzen Designed, built, and tested new generation of self-assembling modular robotics with expandable polyurethane foam named FoamBots and implemented controllers in python Redesigned autonomous foam reagents mixing device and peristaltic pump manufactured only 				

Teaching Experience	16-264 Humanoids, CMU Robotics InstituteSInstructor: Dr. Chris Atkeson			
	16-711 Kinematics, Dynamic Systems and Control, CMU Robotics Institu Instructor: Dr. Hartmut Geyer			
Skills	 Software & OS: PTC Creo/Pro E, SolidWorks, Gazebo, PyBullet, Pinocchio, CasADi, OSQP, IPOPT, QuadProg ROS, QNX, Linux(Ubuntu) Programming: C/C++, MATLAB/Simulink/SimMechanics, Python Robots & Hardware Ballbot, Bi-manual 7DOF arms, Kinova Gen3, CrazyFile Quad-rotor, 			
	Intel RealSense, IMUs (VectorNav), Hokuyo LIDAR, BLDC, Harmonic Drive Manufacturing: Mill, Lathe, CNC Router, CNC Mill, Rapid Prototyping (3D printing, Laser cutter)			
PUBLICATIONS	ç	R. Shu , and R. L. Hollis. "Momentum based Whole-Body Optimal Pl Spherical-Wheeled Balancing Mobile Manipulator." <i>2021 IEEE/RSJ Inte</i> on Intelligent Robots and Systems (IROS), IEEE, 2021 (to appear).		
	C.	R. Shu and R. L. Hollis, "Development of a Humanoid Dual Arm S Spherical Wheeled Balancing Mobile Robot," 2019 IEEE-RAS 19th Inter- on Humanoid Robotics (Humanoids), IEEE, 2019.		
]	F. Sonnleitner, R. Shu and R. L. Hollis, "The Mechanics and Contro Heavy Objects with a Dynamically Stable Mobile Robot," <i>2019 Internat</i> <i>Robotics and Automation (ICRA)</i> , IEEE, 2019, (pp. 9264-9270).	0	
	Į	Shu, R., Siravuru, A., Rai, A., Dear, T., Sreenath, K., Choset, H" geometric motion planning of a robot diver." In 2016 IEEE/RSJ Internat Intelligent Robots and Systems (IROS) IEEE, 2016, (pp. 4780-4785).		
		Shu, R., A. Siravuru, and K. Sreenath. "On the utility of active damping from a free fall." <i>Dynamic Walking Conference</i> (2015).	g leg for safe landing	
]	Li, X., Geraldo, D., Weng, S., Alve, N., Dun, W., Kini, A., Patel, K., S Li, G., Jin, Q., Fu, J "Desktop aligner for fabrication of multilayer m <i>Review of Scientific Instruments</i> 86.7 (2015): 075008.		
PRESENTATIONS	5	Shu, R "Building a Robotic Leg for High Impact Landing" Bipedal Locomotion Seminar - Carnegie Mellon University. (February 20)16)	
		Hollis, R., Shu, R. . "Ballbot: A single-wheeled balancing robot" Carnegie Colloquium on Digital Governance and Security - Carnegie Endo Peace (October 2016)	wment for International	
Awards and Honors	 Scholarships: Uber Presidential Fellowship Carnegie Mellon University (USD 42,500) University of Excellence Scholarship for graduate studies (USD 150,000) University of Excellence Scholarship for undergraduate studies (USD 130,000) Awards: 2014 Dean's Rev. Dr. Martin Luther King Jr. Spirit Award 2013 Stellar Multicultural Performance Award Society of Hispanic Professional Engineers (while U of M chapter president) 2013 National Chapter of the Year 2013 Region 6 Chapter of the Year 2013 Blue Chip Award 			
	2012, 2013, 2014 Undergraduate Achievement Award 2013 1st place Case Study - National Institute for Leadership Advancement			