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Abstract— A control algorithm is developed to enable dy-
namically stable spherical-wheel robots (ballbots) with arms
to detect a heavy object of unknown mass, navigate to it,
lift it, transport it, and place it in a desired location semi-
autonomously. Previous work has successfully demonstrated
two-wheeled dynamically stable mobile manipulator robots
transporting heavy objects. We report here the first ballbot
to reliably achieve such a task. A successful semi-autonomous
lift and transport of a 15 kg heavy box whose actual mass was
unknown was achieved using a combination of feedforward and
feedback control laws based on a quasi-static center of mass
computation. The ballbot’s pan and tilt sensor turret tracked
fiducial markers on the box. Ballbot-to-human and human-to-
ballbot exchanges of a 10 kg heavy object was achieved while
dynamically balancing.

I. INTRODUCTION

To be truly useful, mobile robots need to be able to lift
and transport objects to collaborate with humans in work
and home environments. This paper concerns the successful
detection, lifting, and transport of a heavy object with a
dynamically stable mobile robot. Heavy repetitive lifting
continues to be a major health risk for workers. Further,
current mobile manipulators are either too weak to carry
heavy objects greater than about 10 kg or they have wide
multi-wheel bases that make maneuvering difficult in narrow
workplace or home environments. The ballbot is a radically
different kind of mobile robot. Its large single spherical
wheel gives it omnidirectional motion and omnidirectional
compliance. Unlike traditional statically stable mobile robots
which have wide bases to avoid tipping, gravity-referenced
ballbots can be tall and slender with high centers of gravity.
We show in this paper how ballbots can lift and transport
heavy loads by leaning back to maintain stability, similar to
how humans and humanoid robots carry out these tasks.

We employ the person-size CMU ballbot [1], described in
more detail in Sec. II-C and shown in Fig. 1, for our study.
We postulate that the ballbot’s small footprint, strong arms
and its ability to exert forces by inducing a lean angle make it
a fitting robot to take over many demanding lifting tasks. To
accomplish the lifting and transporting tasks autonomously,
the ballbot must navigate to the location of the heavy object
to be picked up (say, from a table), detect and recognize
the object, grasp the object, pick up the object, transport the
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Fig. 1. The CMU ballbot lifting a 15 kg payload using its 2-DOF arms
while maintaining a fixed location on the floor.

object, and set the object down at a goal location. In our case,
we relax the requirement of full autonomy for expedience but
retain semi-autonomous operation. Alternatively, the ballbot
can get and give the object from/to a human. If the human
receives the heavy object from the ballbot, he/she can readily
assess the object’s weight by observing the lean angle of
the ballbot. It is important that the ballbot retain its smooth
and graceful balancing motion during all phases of the task,
since people feel very uncomfortable around robots having
high jerk motions [2]. To our knowledge, this is the first time
that a ballbot is able to semi-autonomously pick/place heavy
objects of unknown mass.

II. RELATED WORK

A. Human Lifting

As Hsiang explains in [3] there is a lot of research in
human lifting motions and the resulting injuries and problems
such as low back pain. According to the work of Hsiang,
there are many studies on the risks of repetitive lifting,
such as the study of Antwi-Afari [4]. But it is not fully
understood how and if proper training and special lifting
techniques help to avoid or reduce the risks. The study of
Antwi-Afari performed a biomechanical analysis on the risks
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for musculoskeletal disorders due to repetitive heavy lifting.
They concluded that the main risk factors for musculoskeletal
disorders are the lifting duration, weights, and postures.

Studies by Graham [5] and Bosch [6] determined that
passive exoskeletons can reduce the muscle activity by
about one third. Additionally, these devices can extend the
endurance of the workers by almost three times. The system
used in this study reduced the back issues but increased the
discomfort in the chest region and is therefore not a good
solution. These studies show that repetitive lifting tasks are
bad for a person’s well being, even with proper training and
a good lifting position and additional assisting devices.

Hsiang explains in [3] that back injuries due to repetitive
heavy lifting are a big cost factor for worker compensation
costs in companies. The presented work could not find a
representative correlation between different lifting techniques
and low back pain. Therefore they conclude, that even if
the safety officials of companies provide lifting training,
the workers will still continue carrying heavy objects and
therefore can suffer from the risks. This poses the question:
“how can a person judge when an object is too heavy to
safely lift?” A person detects the weight of the object either
by judging from visual observation or by experimenting with
the object. Already in the early childhood, humans learn to
estimate the weight of an object just by observing another
human interacting with it. If the person is not able to observe
an interaction with the object, its mass is detected by the
pressure applied to the fingertips and hands. Therefore, a
human is able to quickly counterbalance the lifted object. But
the quick counterbalancing reaction, however, can potentially
injure muscles and tendons in the back.

Mechanized lifting devices have, of course, been around
for eons. In robotic form there are autonomous fork lift trucks
that can lift and transport massive payloads. A research
question that remains is whether more agile machines such
as humanoid robots can adequately lift and transport heavy
loads in everyday human environments.

B. Dynamically stable and humanoid robots

Over the last decade, a variety of different humanoid
robots were developed. Humanoids such as Atlas [7],
Toro [8] and HRP-2 [9] showed successful lifting of payloads
up to 12.2 kg. Other dynamically stable robots on two wheels
such as Golem Krang and Handle were able to lift and carry
oddly shape objects, such as a chair [10], [11], [12], and
objects up to 45 kg [13]. (It should be recognized that two-
wheeled mobile robots are dynamically stable in only one
direction and are not omnidirectional.)

C. The CMU ballbot

The CMU ballbot is the first successful single-spherical-
wheel mobile robot [14]. A description of the evolved robot
can be found in [1]. The CMU ballbot is human size and can
withstand hard and soft pushes by humans without loosing
its balance [15]. In 2011, a pair of 2-DOF arms with series-
elastic actuators were added to the ballbot research platform
and a shape space planner was developed which used the

arms to assist in navigation [16]. This planner enables arm
movement with precisely known attached weights of up to
2 kg while the ballbot maintains a fixed position on the
floor [1]. The ballbot is able to accomplish this by leaning
backward so its center of gravity is directly above its center
of support as illustrated in Fig. 2. This paper extends these
capabilities to lift objects of much heavier unknown masses
and transport them from place to place. To our knowledge,
the ballbot is the first single-spherical-wheel robot capable
of transporting heavy objects. Fig. 1 shows the CMU ballbot
holding a 15 kg mass while balancing and maintaining a
fixed position on the floor.

Fig. 2. Planar simplied ballbot model with arms and external payload.
Note that the COM axis angle with respect to the vertical will change as
arm angle α and payload mass marm change.

D. Differential Flatness Path Planning

The differential flatness path planner presented by
Shomin [17] enables the ballbot to smoothly navigate au-
tonomously through the environment while avoiding static
and dynamic obstacles. The planner is capable of generating
dynamical feasible trajectories for the underactuated ballbot
online on the onboard computer. This was achieved by
linearizing the system to find flat outputs, which is only
possible if the ballbot’s lean angle φ is assumed to be
bounded between − 5◦ < φ < 5◦, see Fig. 2. While
ballbot’s acceleration is proportional to its body lean angle,
its position depends on the ball angle θ. To enable a point-
to-point motion with an initial and final target condition, the
crackle of the flat output is minimized, resulting in a ninth-
degree polynomial trajectory for the ball path (θp) on the
floor. Using the flat outputs and the 9th order polynomial
a feasible lean angle trajectory (φp) can be generated [17].
In this work we modify the planner to be able to generate
feasible trajectories when the initial state of the ballbot has
a non-zero lean angle.
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III. LEAN ANGLE COMPENSATION
The overall task consists of four separate blocks. The

object detection and localization, the weight estimation, the
center of mass calculation, and the lean angle compensation.
The following paragraphs will provide deeper insights into
these four blocks.

A. Object localization
The ballbot has a pan/tilt turret at its top that carries an

RGB-D camera and other sensors. The camera was used to
detect and locate the object to be picked up. Fiducial markers
are widely used in robotics for detection, localization and
mapping. To ensure a reliable object detection and localiza-
tion the ARUCO framework presented in [18], [19] was used
to avoid having to solve a more complicated vision problem.
Due to the different positions of the object (a yellow box
containing various weights and equipped with handles), on
which a pair of 15×15 cm fiducial markers were affixed to
ensure detection at a distance, as well as in close proximity.
Fig. 3 presents the results of a benchmark test, where the
target object to be lifted was placed on a table of 0.9 m
height. During the test, the box was moved around randomly
between the ballbot’s front and 90◦ to the right side. The
benchmark script was running at 5 Hz. Each time a valid
pose of the object was detected it was marked on the map.
The red crosses symbolize a detection of the top marker, the
green crosses symbolize the location of the marker on the
front side of the box. Because the object would interfere with
the ballbot’s body no detections were seen closer than 0.3 m.
The top marker is detected up to a maximum of 2 m radius
from the ballbot. The marker in the front could be detected
up to 3.5 m away. Since the ballbot’s pan/tilt turret can rotate
360◦ in pan, the result received from this 90◦ benchmark test
is valid all around the ballbot.

Fig. 3. Results: Object detection and localization with ARUCO fiducial
tracking.

B. Payload mass estimation
The weight of the box is detected by the torsion of

the series elastic springs in both arms and the arm angle
α. A polynomial function was generated for each arm to
compensate the small differences between them. As each arm
published its spring torsion and arm angles to a ROS topic,
a separate laptop computer running MatlabTM can read and
recorded this topic via Wi-Fi. Each arm was moved several
times with different weights, commanded by a MatlabTM

script. During those movements, the spring values, as well
as the corresponding arm angles and attached weights, were
recorded. Fig. 4 shows the curve fitting tool of MatlabTM

which was used to fit a polynomial curve into the received
data. The X and Y axis shows the arm angle and the spring
torsion, while the Z axis shows the correlating mass. Several
mass levels are visualized, as the mass was increased in 1 kg
steps during the calibration. The procedure was done for
each arm individually to achieve more precise results and
to detect any load difference between the arms if the box is
not centered during lifting.

Fig. 4. Determination of the polynomial function using MatlabsTM curve
fitting tool.

C. Payload lean angle compensation
Lifting a heavy object away from the center of mass of

the ballbot’s body causes the entire system’s center of mass
to shift outside of the support point on the floor. This can
lead to the ballbot falling over if the shift is not accounted
for. We use the estimate of the mass marm and arm joint
angle α to calculate the center of mass of the entire system.
To calculate the new center of mass, the body center of mass
position and the arm center of mass position are calculated
separately as follows:

COMbody,x = −Lb · sin(φ)
COMbody,y = Lb · cos(φ)

(1)

where Lb = 0.71 m is the body center of mass along the
z axis and φ is the ballbot’s lean angle.

The center of mass for the arms is calculated from
COMarm,x = Larmjoint · sin(φ)− La · sin(φ− α)

COMarm,y = Larmjoint · cos(φ)− La · cos(φ− α)
(2)

where Larmjoint = 1.3 m is the shoulder joint height, La =
0.56 m is the arm length and α is the arm angle. Because
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the lifting is either performed on the front or back side of
the ballbot only a 2D model needs to be considered. For all
the calculations we assume that the hollow thin aluminum
tube arms are massless.

The body and arm center of mass offsets are combined to
yield the new center of mass of the whole system as follows:

COMsys,x =
COMbody,x ·mbody + COMarm,x ·marm

mbody +marm

COMsys,y =
COMbody,y ·mbody + COMarm,y ·marm

mbody +marm

(3)
where mbody = 81.65 kg is the mass of the ballbot and
marm is the mass of the object estimated using the procedure
described in Section III-B.

Knowing the new system’s center of mass, a desired body
lean angle to bring the center of mass back on top of the
support point is calculated by

φa = atan
COMsys,x

COMsys,y
. (4)

Combining Eq. 3 and Eq. 4 we numerically calculate the
required body yield angle φa to maintain balance:

φa = acot
mbody · Lb +marm · (Larmjoint − La · cos(α))

La ·marm · sin(α)
(5)

D. Lean angle control

The cascading control loop with feedforward compen-
sation method used to lift and transport heavy objects is
depicted in Fig. 5. The inner PID loop running at 500 Hz
ensures that the ballbot maintains its balance at all times.
It does so by tracking a desired lean angle, the details of
which are described in [20]. In the case of purely balancing
it tracks a zero lean angle. For other tasks such as lifting
or navigation a non-zero lean angle is required. The inner
loop is fed with three different feedforward compensation
terms. The zero lean angle compensation term is a constant
value measured offline to compensate for the body’s center
off mass being off of the vertical axis due to asymmetrical
mass distributions inside the body. The simple PD feedback
compensation is only active when the ballbot is in station
keeping mode. This compensation prevents the ballbot’s
position from drifting if the zero lean angle compensation
is not exactly correct. Station keeping mode is enabled right
after the ballbot transitions from its statically stable state with
all three legs deployed to its dynamically stable state with
the legs retracted. The third compensation term corresponds
to the new proposed strategy described in Section III-C. All
of the compensation terms are fed to the inner loop at a rate
of 500 Hz.

To autonomously navigate from point-to-point, station
keeping mode is disengaged and the desired lean angle
trajectory generated by the differentially flat path planner
is fed to the inner loop. The path planner described in
Section II-D was designed to operate between body lean

Fig. 5. Overview of the implemented cascading control loops with
feedforward compensation terms.

angles φ of −5◦ < φ < 5◦. When the ballbot is carrying a
heavy object there is an induced body lean angle φa needed
to maintain balance. Without modification the path planner
cannot account for the induced body lean angle and will
generate trajectories that will destabilize the ballbot. Thus,
we feed the induced body lean angle to the path planner. By
tracking the desired body lean angle trajectory the inner PID
loop will cause the ballbot to closely track a desired ground
path [21].

IV. RESULTS

A. Lateral movement

Fig. 6 presents the lateral movement achieved while lifting
a 10 kg heavy object with both arms. The actual lifting,
where the arms were raised from 0◦ to 90◦, occurred between
second 5 and second 15. During the lifting maneuver, the
object weight detection is constantly updated at a frequency
of 500 Hz. This ensures that the object is immediately
detected as soon as the “hands” touch it. During the whole
maneuver, the unwanted ballbot wandering movement stayed
below 2 cm, making it possible to to do several experiments
described in the following sections.

Fig. 6. Lateral movement while lifting an 10 kg heavy object

B. Human interaction

To be truly useful in a human environment, a ballbot needs
to be able to deliver or receive objects at any time from
a human. The following experiments present this ability.
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The ballbot carries a 10 kg heavy object with its arms
raised to 60◦. The target is set 0.3 m in front of a subject
person. Path planning is done by the differential flatness path
planner as explained earlier in Sec. II-D. Fig. 7 shows that
the target position near the human is reached. The subject
grabs the object with both hands and lifts it within about
5 s. During this handover, the ballbot’s position does not
change noticeably, as the perceived load and lean angle is
updated continually at 500 Hz. The load change on the arms
is detected and the ballbot starts lowering its arms as soon as
the payload reaches 0 kg. After the successful delivery, the
ballbot drives back to its home position. This experiment
presents the ballbot’s ability to deliver an object with an
unknown mass and adjust the lean angle fast enough to
keep its position while interacting with a human. This test
is performed with a maximum load of 10 kg.

Fig. 7. The ballbot delivers a 10 kg heavy object to a person

In a second experiment, the ballbot receives a 10 kg heavy
object from a human subject. Again, the differential flatness
path planner is used to drive close to the subject. After
reaching the target position the subject places the object on
the robot’s extended “hands” at a normal human speed. The
time between touching the robot’s “hands” and the subject
releasing his/her grasp was measured on average at 5 s. The
ballbot immediately adjusts its lean angle to stay in the same
position. Further, the ballbot informs the subject via speech
output that it has detected an object and tells the subject
how heavy it is. The ballbot then continues to drive back to
a predefined location.

Both experiments were repeated four times to ensure re-
peatability. Each time the ballbot was able to counterbalance
the additional forces and report the weight of the object
within about ± 0.5 kg.

C. Transport

This experiment evaluates the ballbot’s ability to semi-
autonomously lift and transport an object between two dif-
ferent locations. The ballbot was positioned in front of the
box prior to the start of the experiment. During the whole
test, the ballbot was balancing gracefully. After sending the
lifting command, the ballbot adjusts its arms slightly below
the handles of the box and starts lifting the box with its pair
of 2 DOF arms. The lifting of the box takes about 8 s. As

soon as the target arm angles of 80◦ is reached, the ballbot
verbally reports the weight of the object and starts to yaw to
its right side by 90◦, as can be seen in Fig. 8.

Fig. 8. The ballbot is transporting a 10 kg heavy object from A to B.

After yawing to the correct position while transporting the
10 kg heavy object, the lowering of the object is initiated.
The end position, with an object placed on the table, is
reached 47 s after the lifting command is sent, as seen in
Fig. 9. This experiment was repeated five times in a row with
similar results. A similar experiment without performing the
yaw motion was as well repeated five times successfully.

Fig. 9. The ballbot successfully placed the object on the table.

End-to-end autonomous transport between two remote lo-
cations was not repeatably achievable, as it was not possible
to reliably navigate to pick up the object within the very
tight margin of ± 4 cm needed for the “hands.” Therefore,
a successful lift was not guaranteed due to the imperfect
starting position. The vision system detected the box reliably
in 5 out of 5 trials, but a correct position which allowed a
successful lifting was only reached twice. It is likely that this
situation could be improved by introducing visual servoing
techniques.

D. Heavy weight transport

This final experiment presents the maximum lifting and
transport capability of the current setup of the ballbot. If there
are tasks where higher limits would be needed, the series
elastic actuators in the arms would need to be replaced or
redesigned. During these tests, the spring loads were closely
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Fig. 10. Closeup of the ballbot’s arms and 3D-printed “hands” while
holding the box and resting against the body.

monitored at all times to protect them from permanent
deformation. For these tests, the arms were extended to 70◦.
Fig. 1 shows the ballbot carrying a 15 kg heavy object
requiring the ballbot to lean back 6.2◦. Note that after lifting
a heavy object from a table and moving away, the arms can
be lowered to bring the object into contact with the body
before transporting it somewhere as shown in Fig. 10. This
action, similar to the way a person might transport a heavy
load, serves to reduce the lean angle and reduce or even
eliminate power draw from the arms.

Even with a 15 kg heavy object the ballbot showed that it
can keep its position stationary in station keep mode and
yaw around its axis, at 10◦/s, while keeping its position
stationary within ±2 cm. Additionally, the ballbot is able
to navigate from point to point using the differential flatness
path planning while carrying the 15 kg load.

V. CONCLUSIONS

This paper presented how a single wheeled dynamically
stable mobile robot, such as the ballbot, is able to success-
fully lift and transport a heavy object. The results show for
the first time that the ballbot class of mobile robots can lift
and transport surprisingly heavy loads while retaining the
ability to balance gracefully. We project that someday such
robots can move out of the lab environment and into general
use.

It was shown as well, through experimental results, that
the CMU ballbot is now able to detect and locate objects
using its onboard RGB-D camera and ARUCO fiducials.
The lifting and carrying tasks showed that the ballbot was
able to successfully lift and transport objects with varying
weights of up to 15 kg. Additionally, it was shown that
the ballbot can collaborate with humans by delivering or
receiving heavy objects directly. The ballbot provides audio
feedback to help the interacting humans to understand the
ballbot’s next movements and actions. The dynamic weight
adaptation ensures that even if the weight changes suddenly,
the robot will keep its balance.

The two main challenges were the correct weight estima-
tion and the precision of the path planning. Due to the narrow
opening of the “hands” and the relatively short limited-DOF
arms, the position in front of the box needs to be as precise
as ±4 cm.

VI. FUTURE WORK

The ballbot relies on a body-mounted lidar to localize itself
in mapped environments. While it transports heavy objects
the stationary mounted lidar tilts at the same angle as the
body. This tilt results in difficulties with correct localization.
Therefore a different solution for the localization needs to be
implemented. A possible solution could either be the same
lidar mounted on a gimbal to compensate the lean angle or
the use of a spherical lidar. Alternatively, visual SLAM and
mapping could be implemented to improve the navigation.
Also, the vision system needs to be able to detect objects
without the need of markers.

Assuming the localization and object detection is solved,
the next step is to grasp and lift the object. The current 2-
DOF arms are restricted to very basic movements.The motion
range can be visualized as two half spheres, each on one side
of the ballbot. Therefore grasping smaller objects in front
of the ballbot is currently not possible. The linear torsion
springs limit the maximum weight of the objects carried to
15 kg. Additionally, due to the elastic elements on the arms
joints, if the payload on the arms changes rapidly it will
sometimes cause unstable vibrations at the arm joint. This
phenomena can be observed in the accompanying video. In
the short term a solution to this is to replace the current
elastic elements with stiffer ones. In the long term our group
is designing and building a pair of 7-DOF arms for the
ballbot to overcome the limitations of the current arms.

The experimental results showed that the current path
planner tracks long trajectories very well, but lacks in the
precision of exactly reaching the target location. Because a
precise position prior to lifting is essential, a more precise
path planning method for short distances needs to be imple-
mented. Additionally this new planner should consider the
lean angle and hand position to navigate closer to the target
object.
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