Development of a Humanoid Dual Arm System for a Single-Wheeled Balancing Mobile Robot
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Overview

This work presents a new 14-DoF dual manipulation system for
the CMU ballbot [1]. The result is a new type of robot that
combines smooth omnidirectional motion with the capability to
interact with objects and the environment through manipulation.

The integration of the arms with the CMU ballbot is
demonstrated through heavy payload lifting and balancing
experiments.

i

Related Work

The are many collaborative robotic manipulation platform.
Unfortunately, they suffer from one or more:

* Low mass-to-payload ratio

* Low payload capacity

 Large external control box

* Non-anthropomorphic kinematics

* Bulky and heavy

Research has been conducted to mitigate these issues [3][4].
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Figure 2: Plot of arm weight vs. payload capacity for different robotic
arms. Commercial and research literature arms are shown.

Arm Mechanical Design
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Figure 3: CMU ballbot dual arm system with BH-282
grippers (CAD rendering).
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Figure 4: CMU ballbot dual arm system with BH-282 grippers (CAD

High power and strength density
Size Lightweight to be compatible with ballbot

Sensing High proprioception

Lift and carry large payloads
Usefulness

& Safety

Arm dimensions comparable to those of human

Large bi-manual workspace; similar to that of a human

Robustness Physical robustness against perturbations and impacts

React compliantly to unanticipated disturbances

mass-to-payload ratio: 0.78
Mass: 12.9 kg
Shoulder - Wrist distance: 615.5 mm

Sensors: Absolute + Incremental Encoder, IMU,
Joint Torque, Temperature.

Max. Payload @ Full Extension: 10 kg
Bi-manual workspace: 0.46 m2
Joint Torque Limiter

Active Compliance

Workspace

(b)

Figure 5: Workspace of the ballbot arms: (a) top view (b) side view. Dark green
represent bi-manual workspace area.

Table | : Mechanical Properties of the 7-DoF Arm

Experimental Validation

Video: Balancing while arm movement

Video: Lifting 6.8 kg [statically stable]

Single arm motion while balancing
without COM regulation

Manipulating 6.8kg dumbbell

(ballbot is constrained and not balancing)

Conclusion

Developed pair of 7-DoF arms of comparable size and weight
to that of an average adult human.

Introduced a new type of agile and dexterous mobile
manipulator by adding a pair of 7-DoF arms and hands to
enhance the CMU ballbot research platform.

Demonstrated lifting a 6.8 kg payload with Barrett Hand
Demonstrated successful control of the arms while balancing.

Future Work

« Developing more intelligent controls that combine manipulation
and locomotion - whole body control

* Incorporate vision to improve end-effector position

* Realize assistive tasks such as maneuvering a manual
wheelchair, leading elderly or sight impaired individuals from
place to place

Subscribe to our Youtube Channel: CMU Ballbot
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Figure 8: System integration performed in this work

- Torque sensor + IMU ms
Figure 6: Size specification for pair of arms, all dimensions in mm. - Daisy Chain Link bending stiffness: K = 3EI/L . T = ~m - g
« Hollow Shaft + Can increase link stiffness; thus increase
’ « Armreach: 0.615 m
Robot vs Human Workspace . Multi-turn precision each: 0.615
£
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7-DoF Arm Joint Specs
Joint Articulation Range Actuator Type Gear Torque [N/m] Max. Velocity Mass
No. [deg.] [SENSO-Joint] Ratio peak - nominal [rpm] [kg]
_ 1 Shoulder flexion/extension [-720, 720] 100 RD5014 AEST 160 120 - 56 21 1.45
Bimanual 2 Shoulder abduction/adduction | [-10,190] 100 RD5014 AEST 160 120 - 56 21 1.45
workspace 3 Shoulder rotation int./ext. [-720, 720] | 100 RD5008 AEST 160 100.8 - 30 34 1.35
4 Elbow flexion/extension [-30,110] 100 RD5008 AEST 160 100.8 - 30 34 1.35
5 Wrist rotation [-720,720] 75 RD3806 AEST 100 19-54 85 0.7
6 Wrist flexion/extension [-90,90] 75 RD3806 AEST 100 19-54 85 0.7
L Wrist abduction/adduction [-90.90] 75 RD3806 AEST 100 19-54 85 0.7 Figure 9: Evolution of the CMU ballbot research platform. In all
images the ballbot is dynamically balancing.
Figure 7: Workspace of the ballbot arms: (a) top view (b) side view. Dark green

represent bi-manual workspace area.
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+ The balancing controller runs real- b 8
time at 500 Hz on a second Intel y
Core2 Duo @ 2.4GHz onboard | Arm Controller Future Work and Applications
computer running QNX RTOS.
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Figure 11: Overview of the balancing cascading control loops with feedforward Figure 10: Block diagram of the impedance joint controller with gravity
lean angle compensation term compensation.
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